Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

catena-Poly[[diaquadichloroiron(II)]-μ-1,4-dioxane- $\left.\kappa^{2} O: O^{\prime}\right]$

Richard L. Speer Jr and A. Alan Pinkerton*
Department of Chemistry, University of Toledo, Toledo, Ohio 43606, USA
Correspondence e-mail: apinker@uoft02.utoledo.edu
Received 11 April 2002
Accepted 12 June 2002
Online 12 July 2002

The crystal structure of the title compound, $\left[\mathrm{FeCl}_{2}-\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, contains six-coordinate $\mathrm{Fe}^{\mathrm{II}}$ atoms in approximately octahedral environments. The $\mathrm{Fe}^{\mathrm{II}}$ atoms have $\overline{1}$ symmetry, i.e. all pairs of identical ligands are trans. The structure consists of polymeric chains made up of dioxane molecules, in the chair conformation with $\overline{1}$ symmetry, linking the $\mathrm{Fe}^{\mathrm{II}}$ centers. The chains are crosslinked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Comment

For many years, crystal engineering has utilized the hydrogen bond for the formation of extended networks, thus creating structures with a variety of pore shapes and sizes able to accommodate various guest molecules. Many of the networks that have been reported are neutral. An obvious alternative to neutral frameworks are ionic ones, in particular, cationic frameworks. These could then play host to a variety of negatively charged species of various sizes. It has been suggested that a metal-cation-dioxane network could achieve this (Hasche et al., 2000). A number of structures have been reported involving alkali-metal-dioxane networks (Taube et al., 1993; Eaborn et al., 1997; Kühl et al., 1999, 2000; Hasche et al., 2000). These structures indicate the variety of structures

(I)
obtainable as a result of variations in the coordination at the metal center; thus, one-dimensional chains, two-dimensional sheets, and three-dimensional networks have all been observed. The only other known extended dioxane-metal structures are chains with hard metal centers, for example, $\mathrm{Al}^{\mathrm{III}}$ (Boardman et al., 1983), Ga ${ }^{\text {III }}$ (Boardman et al., 1984), $\mathrm{Mg}^{\text {II }}$ (Parvez et al., 1988), Cd ${ }^{\text {II }}$ (Almond et al., 1991), $\mathrm{Tl}^{\text {III }}$ (Jeffs et al., 1983), $\mathrm{Nd}^{\text {III }}$ (Taube et al., 1996), and $\mathrm{Fe}^{\mathrm{II}}$ (Müller et al., 1997). Recently, another type of chain structure has been
reported where 1,4-dioxane links 1,2-diiodotetrafluoroethane molecules by coordination to the two I atoms (Chu et al., 2001).

While attempting to extend our work on lithium-containing cationic networks to include iron(II)-containing anions by the reaction of LiCl and FeCl_{2} in dioxane, only the lithium-free title compound, (I), a one-dimensional polymeric structure, was obtained. This compound contains a pseudo-octahedral six-coordinate $\mathrm{Fe}^{\mathrm{II}}$ cation with $\overline{1}$ symmetry, coordinated by two trans Cl^{-}ions and two trans water molecules. The final two coordination sites are occupied by 1,4-dioxane rings bound through O atoms, as shown in Fig. 1. The O atoms of the dioxane ring, which adopts a chair conformation, bind to two $\mathrm{Fe}^{\mathrm{II}}$ atoms on either side, with bond distances of $2.1830(17) \AA$ (Table 1). This coordination results in the formation of chains parallel to a and these chains build the backbone of the crystal structure, similar to the case in catena-poly[[bis(2,2,6,6-tetra-methylheptane-3,5-dionato)iron(II)]- μ-1,4-dioxane] (Müller et al., 1997). In the present case, the iron-dioxane chains are crosslinked by $\mathrm{O}_{\text {water }} \cdots \mathrm{Cl}$ hydrogen bonding (Fig. 2). The hydrogen bonding involves the H atoms located on the coordinated water molecules and the coordinated Cl^{-}ions on the $\mathrm{Fe}^{\mathrm{II}}$ atoms of two adjacent chains (Table 2). Each water molecule hydrogen bonds to two Cl^{-}ions from two adjacent $\mathrm{Fe}^{\mathrm{II}}$ centers, and each Cl^{-}ion accepts two hydrogen bonds from two adjacent $\mathrm{Fe}^{\mathrm{II}}$ centers, i.e. an approximately square arrangement with the two Cl and two O atoms at opposite corners, each side representing a hydrogen bond, and each corner bound to a different $\mathrm{Fe}^{\mathrm{II}}$ atom; an approximately

Figure 1
One polymeric chain in (I) parallel to a. [Symmetry codes: (i) $-x, 1-y$, $-z$; (ii) $1-x, 1-y,-z$.]

Figure 2
The hydrogen-bonded layer perpendicular to the $\mathrm{Fe}-\mathrm{O}_{\text {dioxane }}$ vector in the polymer chains of (I). Symmetry codes as in Tables 1 and 2, with the addition of (iii) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (iv) $1+x, y, 1+z$; (v) $1-x$, $1-y, 1-z$; (vi) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$.
planar FeOClH layer is thus formed perpendicular to the $\mathrm{Fe}-$ $\mathrm{O}_{\text {dioxane }}$ vector within the polymer chain.

Experimental

Anhydrous iron(II) chloride (0.50 g) and lithium chloride (0.50 g) were placed in a 100 ml beaker. 1,4-Dioxane (50 ml) was added and the solution was heated and stirred for 2 h . After filtering off unreacted starting material, the resulting solution was divided among 5 ml vials for evaporation and crystallization.

Crystal data

$\left[\mathrm{FeCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=250.89$
Monoclinic, $P 2_{1} / n$
$a=6.8590$ (18) \AA
$b=9.273$ (2) A
$c=7.925$ (2) \AA
$\beta=114.082(5)^{\circ}$
$V=460.2$ (2) \dot{A}^{3}
$Z=2$

$$
\begin{aligned}
& D_{x}=1.811 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1309 \\
& \quad \text { reflections } \\
& \theta=3.3-29.2^{\circ} \\
& \mu=2.19 \mathrm{~mm}^{-1} \\
& T=100(1) \mathrm{K} \\
& \text { Irregular, red-brown } \\
& 0.20 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD

 diffractometerω scans
Absorption correction: empirical
via multipole expansion
(Blessing, 1995; Sheldrick, 1996)
$T_{\text {min }}=0.364, T_{\text {max }}=0.659$
1799 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.094$
$S=1.05$
1058 reflections
76 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Fe} 1-\mathrm{O} 1$	$2.1830(17)$	$\mathrm{Fe} 1-\mathrm{Cl} 1$	$2.4583(8)$
$\mathrm{Fe} 1-\mathrm{O} 2$	$2.0934(19)$		
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$88.65(5)$	$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O} 1$	$92.31(7)$
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{Cl} 1$	$91.35(5)$	$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$89.56(4)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 1$	$87.69(7)$	$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{Cl} 1$	$90.44(4)$

Symmetry code: (i) $-x, 1-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H1A $\cdots \mathrm{Cl} 1^{\text {vii }}$	$0.82(4)$	$2.31(4)$	$3.1202(19)$	$171(4)$
$\mathrm{O}^{\text {ii }}-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{2}$	$0.83(4)$	$2.31(4)$	$3.1280(19)$	$173(3)$

Symmetry codes: (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (vii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Refined $\mathrm{C}-\mathrm{H}$ distances were in the range 0.98 (3)-1.00 (3) \AA.
Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

The authors thank the College of Arts and Sciences of the University of Toledo for generous financial support of the X-ray diffraction facility.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1377). Services for accessing these data are described at the back of the journal.

References

Almond, M. J., Beer, M. P., Drew, M. G. B. \& Rice, D. A. (1991). J. Organomet. Chem. 421, 129-136.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Boardman, A., Jeffs, S. E., Small, R. W. H. \& Worrall, I. J. (1984). Inorg. Chim. Acta, 87, L27-28.
Boardman, A., Small, R. W. H. \& Worrall, I. J. (1983). Acta Cryst. C39, 433435.

Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chu, Q., Wang, Z., Huang, Q., Yan, C. \& Zhu, S. (2001). J. Am. Chem. Soc. 123, 11069-11070.
Eaborn, C., Farook, A., Hitchcock, P. B. \& Smith, J. D. (1997). Acta Cryst. C53, 1387-1388.
Hasche, S., Mock, C., Otto, J., Schweppe, F., Kirschbaum, K., Krebs, B. \& Pinkerton, A. A. (2000). Inorg. Chim. Acta, 298, 9-15.
Jeffs, S. E., Small, R. W. H. \& Worrall, I. J. (1983). Acta Cryst. C39, 1628-1630. Kühl, O., Sieler, J., Baum, G. \& Hey-Hawkins, E. (2000). Z. Anorg. Allg. Chem. 626, 605-607.
Kühl, O., Sieler, J. \& Hey-Hawkins, E. (1999). Z. Kristallogr. 214, 496-499.
Müller, H., Seidel, W. \& Görls, H. (1997). Z. Anorg. Allg. Chem. 623, 155-158.
Parvez, M., Pajerski, A. D. \& Richey, H. G. Jr (1988). Acta Cryst. C44, 12121215.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Taube, R., Windisch, H., Görlitz, F. H. \& Schumann, H. (1993). J. Organomet. Chem. 445, 85-91.
Taube, R., Windisch, H., Maiwald, S., Hemling, H. \& Schumann, H. (1996). J. Organomet. Chem. 513, 49-61.

